Savitribai Phule Pune University Faculty of Science & Technology

Curriculum/Syllabus For Honors in "Energy Management in Utility Systems"

Bachelor of Engineering (Choice Based Credit System)

Honors in Major Disciplines of Mechanical Engineering, Mechanical Engineering (Sandwich), Automobile Engineering and Electrical Engineering - (2019 Course)

Board of Studies – Mechanical and Automobile Engineering (With Effect from Academic Year 2021-22)

Savitribai Phule Pune University Board of Studies - Automobile and Mechanical Engineering Undergraduate Program - Mechanical Engineering (2019 pattern) Honors in "Energy Management in Utility Systems"

Course Code	Course Name	Teaching Scheme (Hrs./week)			Examination Scheme and Marks					Credit				
			PR	TUT	ISE	ESE	ΤW	PR	OR	Total	ΗT	PR	TUT	Total
Semester-V														
<u>302021MJ</u>	Energy Management	4	-	-	30	70	-	-	-	100	4	-	-	4
<u>302022MJ</u>	Energy Modelling Lab			-	-	-	50	-	-	50	-	1	-	1
	Total	4	2	-	30	70	50	-	-	150	4	1	-	5
	Semester-VI													
<u>302023MJ</u>	Energy Efficiency of Thermal Utilities	4	I	-	30	70	-	-	-	100	4	-	-	4
	Total		•	I	30	70	-	-	-	100	4	-	-	4
Semester-VII														
302024MJ	Electrical Energy Systems	4	I	I	30	70	-	-	-	100	4	-	1	4
302025MJ	Energy Audit Practice	-	2	-	-	-	50	-	-	50	-	1	-	1
	Total	4	2	-	30	70	50	-	-	150	4	1	-	5
Semester-VIII														
302026MJ	Sustainable Energy Conversion Systems	4	I	I	30	70	-	-	-	100	4	-	-	4
302027MJ	Case Study with Field Visit	-	-	2	-	-	50	-	-	50	I	-	2	2
	Total	4	-	2	30	70	50	-	-	150	4	-	2	6

Abbreviations: TH: Theory, PR: Practical, TUT: Tutorial, ISE: In-Semester Exam, ESE: End-Semester Exam, TW: Term Work, OR: Oral

1.Rules and Regulations for Honors / Minors Programs

R1.1 It is absolutely not mandatory to any student to opt for Honours or Minors Program. Choice is given to individual student to undertake Honors/Minors programs from the third year engineering (Fifth Semester) to fourth year engineering (Eighth Semester). Honors/Minors programs will be opted from offered programs by SPPU. Once selected he/she will not be permitted to change the Honors/Minors program in forthcoming semesters.

R1.2 The registration for Honors/Minors Programme will lead to gain additional credits to such students. The result of Honours/Minors Program will get reflected in ledgers to be maintained at University only. After the completion of the Honors/Minors program by concerned students, details of credits earned in Honors/Minors program be printed in the mark sheet of eighth semester. For those students, who will not be able to complete Honors/Minors program, details about the additional credits earned will not get printed.

R1.3 Credits earned through registration and successful completion of the Honors/Minors Programme will **not** be considered for the calculation of SGPA or CGPA.

As per the standard practice, SGPA and CGPA calculations will be done with common base only by considering mandatory credits assigned for the Bachelor programme as per the structure approved by the Academic Council.

R1.4 Students once registered for the programme need to complete all credits assigned for the specific Honors and Minors Programme in the period of 4 years from the Semester-V. Degree with

Honors/Minors will be awarded only after the completion of Honors/Minors Programme along with respective UG program degree.

Student may opt to cancel the registration for Honors/Minors within this period of 4 years. After 4 years expire automatically Bachelor's degree will be awarded to such a student provided he/she has earned the credits needed for graduation.

R1.5 Backlog Honors/Minors courses will not contribute in the decision of A.T.K.T.

2. Examination Scheme:

R2.1 Examinations for Honors/Minors Program will get organized at the University Level. Question paper will be common for all students who had opted/registered for the specific Honors/Minors Program. Evaluation of answer books for Honors/Minors program will be done at the university level.

R.2.2 Additional examination fees as per prevailing rules and regulations will be charged from those students who had registered for Honors/Minors Program to match the expenses for paper setting and the assessment of answer books at the CAP Centre.

Instructions:

- Minimum number of Experiments/Assignments in PR/Tutorial shall be carried out **as mentioned in the syllabi** of respective courses.
- Assessment of tutorial work has to be carried out similar to term-work. The Grade cum marks for Tutorial and Term-work shall be awarded on the basis of **continuous evaluation**.

		302021MJ: I	Energy Mai	nagement			
Teaching Scheme		Cred	its	Examination Scheme			
Theory	4 Hrs./Week	Theory	4	In-Semester	30 Marks		
				End-Semester	70 Marks		
-	•			g, Basic Electrical En	igineering,		
	Thermodynamics,	Applied Therm	odynamics				
Course Obje							
	arise Global and Ir						
	student conversant	•••					
3. To study	energy audit metho	odology and ene	ergy econom	nics.			
Course Outo	comes:						
On completion	on of the course the	e learner will be	e able to;				
CO1. DEMC	NSTRATE genera	al aspects of Ene	ergy manage	ement			
CO2. ILLUS	TRATE different	energy policies.					
				energy management			
	NSTRATE energy		-				
CO5. ILLUS	TRATE basics of	energy economi	ics and finan	cial analysis techniq	ues		
				ns and climate chang			
		Cour	se Contents	5			
Unit 1	Global Energy sc	enario					
			and and ava	ilability, Energy Cor	nsumption in variou		
				energy consumption	-		
		-		ponential rise in ene	=		
				opment and social tra			
	P and its dynamics.			L			
Unit 2	Indian Energy sc	enario					
			ls, Renewal	ole sources including	g Bio-fuels in India		
	-			ojections of consum	-		
	-		-	nomy, Status of Nuc			
	-		-	e of new and renew			
Electricity pricing in India, Energy security, Energy conservation and its importance.							
Unit 3 Energy Policy							
	e 	& its features.	, Schemes of	of BEE under Energ	gy conservation Act		
0.				mers, certification of			
				Energy policy, Nati			
-	nge (NAPCC).	-	-	•			
	Energy Audit						
		nent and objec	tives, Energ	gy audit- definition	and need, Types o		
Energy audi	t. Energy audit	methodology, I	Energy aud	it instruments, Ene	rgy audit reporting		

Energy audit, Energy audit methodology, Energy audit instruments, Energy audit reporting, Analysis and recommendations of energy audit, Benchmarking, Energy audit software.

Unit 5	Energy Economics
Need of In	vestment, Costing of Utilities - Determination of cost of steam, natural gas, compressed
air and ele	ectricity, Financial Analysis Techniques - Simple payback period, Time value of money,
Net Prese	nt Value (NPV), Return on Investment (ROI), Internal Rate of Return (IRR), Risk and
Sensitivity	analysis.
Unit 6	Environmental Impact and climate change
Energy an	d Environment, Global environmental issues- Acid rain, Ozone layer depletion, Global
Warming	and climate change, Loss of biodiversity. International agreements: United Nations
Framewor	k convention on climate change (UNFCCC), Conference of Parties (COP), The Kyoto
Protocol, O	Clean Development Mechanism (CDM).
	Books and other resources
Text Bool	KS:
1. Ener	gy Management Principles, C.B.Smith, Pergamon Press
2. Ener	gy Conservation Guidebook, Dale R. Patrick, S. Fardo, Ray E. Richardson, Fairmont
Press	
Reference	s Books:
1. TED	DY Year Book Published by Tata Energy Research Institute (TERI).
2. Wor	d Energy Resources: Charles E. Brown, Springer2002.
3. 'Inte	rnational Energy Outlook' -IEA annual Publication
4. Ener	gy Management Handbook, Wayne C. Turner, The Fairmont Press Inc., 5th Edition,
Geor	gia.
5. BEE	Reference book: no. $1/2/3/4$.
Web Refe	rences:
1. <u>www</u>	v.aipnpc.org

2. <u>www.beeindia.gov.in</u>

302022MJ: Energy Modelling Lab							
Teaching	Scheme	Cred	its	Examination Scheme			
Practical	2 Hrs./Week	Practical	1	Term Work	50 Marks		
Prerequisites:	Prerequisites: Engineering Graphics, Solid Modelling & Drafting, Engineering Thermodynamics						
Course Objecti	ives:						
1. To aware	about energy sc	enario of comm	ercial buildi	ngs.			
2. To understand energy performance of buildings.							
3. To develop the essential skills for energy modeling of buildings through software like eQuest.							
Course Outcomes:							
On completion of the course, learner will be able to							
CO1. DEVLOPE Energy model of building							
	CO2. EXPLAIN factors involved in energy efficient buildings						
CO3. ASSESS energy performance of building							
Guidelines for Laboratory Conduction							
Link to download eQuest open source software							
https://www.doe2.com/equest							
Term Work							
The learner shall complete following activities as a Term-Work:							
Basic Energy modeling of minimum two floor building with Schematic Design (SD) Wizard in							
eQuest software and preparation of detailed report.							

302023MJ: Energy Efficiency of Thermal Utilities							
Teaching Scheme Credits Examination Scheme				tion Scheme			
Theory	4 Hrs./Week	Theory	4	In-Semester	30 Marks		
				End-Semester	70 Marks		
Prerequisite Courses: Systems in Mechanical Engineering, Engineering Thermodynamics, Applied							
-	ives:		• •	of Thermal utilities			
				opportunities in The	rmal Utilities.		
Course Outcom							
-	of the course the						
 CO1. EXPLAIN thermal utilities and their function. CO2. DEMONSTRATE energy efficiency of thermal utilities. CO3. ASSESS energy efficiency of thermal Utilities CO4. ILLUSTRATE energy conservation opportunities in thermal utilities. CO5. DEMONSTRAE best practices in Thermal Utilities. 							
	r		se Contents	\$			
Unit 1 Fu	iels and Combu	istion					
Introduction of	fuels, Propertie	es of solid, liqu	id and Gas	eous fuels, Propert	ies of Agro residues,		
combustion, Co	mbustion of oil,	coal and gas, D	Praft system	and combustion cor	ntrol.		
Unit 2 Bo	oiler and Steam	System					
treatment, Boild distribution, Ste opportunities in	er blow down, l eam pipe sizing boiler and stear	Properties of sto , Condensate ar n system.	eam , Type nd flash stea	s of steam traps use	boilers, Boiler water ed in Industry, Steam , Energy conservation		
	uidized Bed Co						
Introduction, Mechanism of Fluidized Bed Combustion, Types of Fluidized Bed Combustion Boilers, Retrofitting of FBC systems to Conventional Boilers, Advantages of Fluidized Bed Combustion Boilers							
Unit 4 Furnaces							
Types and classification, Performance evaluation, Various losses in furnace, Instruments required to							
monitor the furnace, General fuel economy measures in Furnace.							
Unit 5 Insulation and Refractories Durness Turnes of Application Calculation of Insulation Thickness and simplified formula for best							
Purpose, Types of Application, Calculation of Insulation Thickness and simplified formula for heat loss, Economics Thickness of Insulation, Refractories classification, its properties, Typical							
refractories in Industrial Use, Selection of refractories, and Heat losses from Furnace walls.							
Unit 6 Best Practices in Thermal Utilities							
-	-			-	t recovery-Sources of		
waste heat and	waste heat and its potential applications, Waste heat survey and measurements, Data collection,						

Limitations and affecting factors, Heat recovery equipment and systems, Heat Exchangers, Incinerators, Regenerators and Recuperates, Waste Heat boilers, System Integration.

Books and other resources

Text Books:

- 1. Boilers Types, Characteristics and functions Carl D. Shields (Mcgraw Hill book)
- 2. Industrial Furnaces (Vol I & II) and M.H. Mawhinney, (John Wiley Publications)
- 3. Refractories and their Uses Kenneth Shaw, (Applied Science Publishers Ltd.)

References Books:

- 1. Handbook on Energy Audit and Environment management, Abbi Y. A., Jain Shashank, TERI, Press, New Delhi, 2006
- 2. Boiler Operator's Guide Fourth Edition, Anthony L Kohan, McGraw Hill
- 3. BEE Reference book: no.1/2/3/4.

Web References:

1. <u>www.aipnpc.org</u>

2. www.beeindia.gov.in